A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades
نویسندگان
چکیده
Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner's rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.
منابع مشابه
An investigation on fatigue failure of turbine blades of aircraft engines by high cycles fatigue test
Thermal stress, wear and material damage produce effects of high-cycle fatigue failures in aircraft engines. The loading configuration on turbine blades of aircraft engines consists of an axial load. The axial load is the centrifugal force combined with the tensile and compressive loads, caused by the natural vibrations of the blades themselves. Low-cycle fatigue and high-cycle fatigue loading ...
متن کاملA new low cycle fatigue lifetime prediction model for magnesium alloy based on modified plastic strain energy approach
Nowadays, the technology intends to use materials such as magnesium alloys due to their high strength to weight ratio in engine components. As usual, engine cylinder heads and blocks has made of various types of cast irons and aluminum alloys. However, magnesium alloys has physical and mechanical properties near to aluminum alloys and reduce the weight up to 40 percents. In this article, a new ...
متن کاملEnergy-Based Prediction of Low-Cycle Fatigue Life of CK45 Steel and SS316 Stainless Steel
In this paper, low cycle fatigue life of CK45 steel and SS316 stainless steel under strain-controlled loading are experimentally investigated. In addition, the impact of mean strain and strain amplitude on the fatigue life and cyclic behavior of the materials are studied. Furthermore, it is attempted to predict fatigue life using energy and SWT damage parameters. The experimental results demons...
متن کاملPredicting Low Cycle Fatigue Life through Simulation of Crack in Cover Plate Welded Beam to Column Connections
This paper presents a low cycle fatigue life curve by simulating a crack in a cover plate welded moment connection. Initiation of ductile fracture in steel is controlled by growth and coalescence of micro-voids. This research used a numerical method using finite element modeling and simulation of ductile crack initiation by a micromechanical model. Therefore, a finite element model of a cover p...
متن کاملEnabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants
Service conditions of turbine blades involve fatigue, creep, and environmental corrosion. Themanner in which these mechanisms interact to initiate cracks is complex. These physicalmechanisms have been observed through observation and measurement of damage in adirectionally-solidified (DS) GTD-111 Ni-base superalloy. Experiments include high temperaturelow cycle fatigue with and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2017